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Abstract—The proof of information inequalities under linear
constraints on the information measures is an important prob-
lem in information theory. For this purpose, ITIP and other
variant algorithms have been developed and implemented,
which are all based on solving a linear program (LP). Building
on our recent work [13], we develop in this paper an enhanced
approach for solving this problem.

I. INTRODUCTION

A framework for linear information inequalities was in-
troduced in [1]. Based on this framework, the problem of
verifying Shannon-type inequalities can be formulated as
a linear program (LP), and a software package based on
MATLAB called Information Theoretic Inequality Prover
(ITIP) was developed [2]. Subsequently, different variations
of ITIP have been developed [3]–[7].

The LP-based approach is in general not computationally
efficient because it does not take advantage of the special
structure of the underlying LP. To tackle this issue, we de-
veloped in [13] a set of algorithms that can be implemented
by symbolic computation. Based on these algorithms, we
devised procedures for reducing the original LP to the
minimal size, which can be solved easily. These procedures
are computationally more efficient than solving the original
LP directly. In this paper, we develop a different symbolic
approach which not only make the reduction from the
original LP to the minimal size more efficient, but also in
many cases can prove the information inequality without
solving any LP. The reader is referred to [8, Chs. 13-15] for
the background and to [14] for the proofs omitted here.

II. INFORMATION INEQUALITY PRELIMINARIES

Throughout this paper, all random variables are discrete.
Unless otherwise specified, all information expressions in-
volve some or all of the random variables X1, X2, . . . , Xn.
The value of n will be specified when necessary. Denote the
set {1, 2, . . . , n} by Nn, the set {0, 1, 2, . . .} by N≥0 and the
set {1, 2, . . .} by N>0.

Theorem II.1. [1] Any Shannon’s information measure can
be expressed as a conic combination of the following two
elemental forms of Shannon’s information measures:

i) H(Xi|XNn−{i})

ii) I(Xi;Xj |XK), where i ̸= j and K ⊆ Nn − {i, j}.

The nonnegativity of the two elemental forms of Shan-
non’s information measures forms a proper but equivalent
subset of the set of basic inequalities. The inequalities in
this smaller set are called the elemental inequalities. In
[1], the minimality of the elemental inequalities is also
proved. The total number of elemental inequalities is equal
to u ≜ n+

(
n
2

)
2n−1.

Shannon’s information measures, with conditional mutual
information being the general form, can be expressed as
a linear combination of joint entropies. For the random
variables X1, X2, . . . , Xn, there are a total of 2n − 1 joint
entropies. By regarding the joint entropies as variables,
the basic (elemental) inequalities become linear inequality
constraints in R2n−1. By the same token, the linear equality
constraints on Shannon’s information measures imposed
by the problem under discussion become linear equality
constraints in R2n−1. This way, the problem of verifying
a (linear) Shannon-type inequality can be formulated as a
linear program (LP), which is described next.

Let h be the column (2n−1)-vector of the joint entropies
of X1, X2, . . . , Xn. The set of elemental inequalities can
be written as Gh ≥ 0, where G is an u × (2n − 1)
matrix and Gh ≥ 0 means all the components of Gh are
nonnegative. Likewise, the constraints on the joint entropies
can be written as Qh = 0. When there is no constraint on
the joint entropies, Q is assumed to contain zero rows. The
following theorem enables a Shannon-type inequality to be
verified by solving an LP.

Theorem II.2. [1] b⊤h ≥ 0 is a Shannon-type inequality
under the constraint Qh = 0 if and only if the minimum of
the problem

Minimize b⊤h, subject to Gh ≥ 0 and Qh = 0

is zero.
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III. ALGORITHMS FOR HOMOGENEOUS LINEAR
INEQULITIES

In this section, we will develop new algorithms for
proving information inequalities. For details, one can refer
to [14].

Let x = (x1, x2, . . . , xn)
T , and let Rh[x] be the set of all

homogeneous linear polynomials in x with real coefficients.
In this paper, unless otherwise specified, we assume that all
polynomials are linear and homogeneous, all inequality sets
have the form Sf = {fi ≥ 0, i ∈ Nm}, with fi ̸≡ 0 and
fi ∈ Rh[x], and all equality sets have the form Ef̃ = {f̃i =
0, i ∈ Nm̃} with f̃i ̸≡ 0 and f̃i ∈ Rh[x].

For a given set of polynomials Pf = {fi, i ∈ Nm} and the
corresponding set of inequalities Sf = {fi ≥ 0, i ∈ Nm},
and a given set of polynomials Pf̃ = {f̃i, i ∈ Nm̃} and
the corresponding set of equalities Ef̃ = {f̃i = 0, i ∈ Nm̃},
where fi and f̃i are polynomials in x, we write Sf = R(Pf ),
Pf = R−1(Sf ), Ef̃ = R̃(Pf̃ ) and Pf̃ = R̃−1(Ef̃ ).

Definition III.1. Let Sf = {fi ≥ 0, i ∈ Nm} and
Sf ′ = {f ′

i ≥ 0, i ∈ Nm′} be two inequality sets, and
Ef̃ and Ef̃ ′ be two equality sets. We write Sf ′ ⊆ Sf if
R−1(Sf ′) ⊆ R−1(Sf ), and Ef̃ ′ ⊆ Ef̃ if R̃−1(Ef̃ ′) ⊆
R̃−1(Ef̃ ). Furthermore, we write (fi ≥ 0) ∈ Sf to mean
that the inequality fi ≥ 0 is in Sf .

Definition III.2. Let R>0 and R≥0 be the sets of posi-
tive and nonnegative real numbers, respectively. A linear
polynomial F in x is called a positive (nonnegative) linear
combination of polynomials fj in x, j = 1, . . . ,m, if
F =

∑m
j=1 rjfj with rj ∈ R>0 (rj ∈ R≥0). A nonnegative

linear combination is also called a conic combination.

Definition III.3. The inequalities f1 ≥ 0, f2 ≥ 0, . . . , fm ≥
0 imply the inequality f ≥ 0 if the following holds:

For all x ∈ Rn, x satisfying f1 ≥ 0, f2 ≥ 0, . . . , fm ≥ 0
implies x satisfies f ≥ 0.

Definition III.4. Given a set of inequalities Sf = {fi ≥
0, i ∈ Nm}, for i ∈ Nm, fi ≥ 0 is called a redundant
inequality if fi ≥ 0 is implied by the inequalities fj ≥ 0,
where j ∈ Nm\{i}.

Definition III.5. Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. If fk(x) = 0 for all solutions x of Sf , then
fk(x) = 0 is called an implied equality of Sf . The inequality
set Sf is called a pure inequality set if Sf has no implied
equalities.

Lemma III.1. [13] Let Sf = {fi(x) ≥ 0, i ∈ Nm} be an
inequality set. Then fk = 0 is an implied equality of Sf if
and only if

fk(x) ≡
m∑

i=1,i̸=k

pifi(x), (1)

where pi ≤ 0 for all i ∈ Nm\{k}.

Lemma III.2. [12] Given h1, . . . , hm, h0 ∈ Rh[x], h1 ≥
0, ..., hm ≥ 0 imply h0 ≥ 0 if and only if h0 is a conic
combination of h1, . . . , hm.

The following proposition is well known (see for example
[9, Chapter 1]).

Proposition III.1. Under the variable order x1 ≻ x2 ≻
· · · ≻ xn, the linear equation system Ef̃ = {f̃i = 0, i ∈
Nm̃} can be reduced by the Gauss-Jordan elimination to the
unique form

Ẽ = {xki
− Ui = 0, i ∈ Nñ}, (2)

where ñ is the rank of the linear system Ef̃ , k1 < k2 < · · · <
kñ, xki

is the leading term of xki
− Ui, and Ui is a linear

function in {xj , for ki < j ≤ n, j ̸= kl, i < l ≤ ñ}.
Among x1, x2, . . . , xn, the variable xki , i ∈ Nñ are

called the pivot variables, and the rest are called the free
variables.

We call the equality set Ẽ the reduced row echelon
form (RREF) of Ef̃ . Likewise, we call the polynomial
set R̃−1(Ẽ) the RREF of R̃−1(Ef̃ ). We say applying
the Gauss-Jordan elimination to R̃−1(Ef̃ ) to mean finding
R̃−1(Ẽ) by Proposition III.1.

Algorithm 1 Dimension reduction

Input: Sf , Ef̃ .
Output: The remainder set Rf .
1: Compute Ẽ for Ef̃ by Proposition III.1.
2: Substitute xki by Ui in R−1(Sf ) to obtain the set R.
3: Let Rf = R\{0}.
4: return R(Rf ).

We say reducing Sf by Ef̃ to mean using Algorithm 1
to find R(Rf ). We also say reducing Pf by Ef̃ to mean
using Algorithm 1 to find Rf , called the remainder set (or
remainder if Rf is a singleton).

Definition III.6. Let f ∈ Rh[x] and x1 ≻ x2 ≻ · · ·xn be a
fixed variable order. The variable set of f , denoted by V (f),
is the set containing all the variables of f . The variable
sequence of f , denoted by V(f), is the sequence containing
all the variables of f in the given order. The coefficient
sequence of f , denoted by C(f), is the sequence containing
the coefficients corresponding to the variables in V(f). We
adopt the convention that C(f) = [0] and V (f) = ∅ for
f ≡ 0.

Definition III.7. Let Pf = {fi, i ∈ Nm}, where fi ∈
Rh[x]. The variable set of Pf , denoted by V (Pf ), is the
set containing all the variables of fi’s, i.e., V (Pf ) =
∪i∈Nm

V (fi).

Example III.1. Let Pf = {f1, f2}, where f1 = x1 +
x2, f2 = x1 − x3. Then, we have

V (f1) = {x1, x2}, V(f1) = [x1, x2], C(f1) = [1, 1],
V (f2) = {x1, x3}, and V (Pf ) = {x1, x2, x3}.
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Observe that for any polynomial f(x), the following
equality holds:

{x : f(x) ≥ 0} = Projx{(x, a) : f(x)− a = 0, a ≥ 0}.

Note that on the RHS, a new variable a is introduced.
Motivated by this observation, in the sequel we will say that
an inequality f(x) ≥ 0 is equivalent to the semi-algebraic
set {f(x) − a = 0, a ≥ 0}. Also, {fi(x) ≥ 0, i ∈ Nm} is
equivalent to {fi(x)− ai = 0, ai ≥ 0, i ∈ Nm}.

Definition III.8. Let H = {hi, i ∈ Nm} be a
set of polynomials, where hi ∈ Rh[b] and b =
(x1, . . . , xn, a1, . . . , am)T . Under the variable order x1 ≻
· · · ≻ xn ≻ a1 ≻ · · · ≻ am, we can obtain the RREF of H ,
denoted by H̃ . Let H̃ = H1 ∪H2, where

V (h) ∩ {x1, x2, . . . , xn} ≠ ∅ for every h ∈ H1, and
V (h) ∩ {x1, x2, . . . , xn} = ∅ and
V (h) ∩ {a1, a2, . . . , am} ≠ ∅ for every h ∈ H2.

H1 is called the partial RREF of H in x and a, and H2 is
called the partial RREF of H in a.

Let F0 ∈ Rh[x] and Sf = {fi ≥ 0, i ∈ Nm}, where
fi ∈ Rh[x]. In the rest of this section, we discuss how to
solve the following problem.

Problem III.1. Prove F0 ≥ 0 subject to Sf .

We first give a method implemented by the following
algorithm for reducing Problem III.1 to another LP.

Algorithm 2 LP reduction

Input: Problem III.1
Output: A reduced LP.
1: Let Gi = fi − ai, i ∈ Nm, where ai’s are assumed to satisfy

ai ≥ 0, i ∈ Nm.
2: Fix the variable order x1 ≻ x2 ≻ · · · ≻ xn ≻ a1 ≻ · · · ≻ am.
3: Apply the Gauss-Jordan elimination to {Gi, i ∈ Nm} and

obtain the RREF.
4: Let J0 be the partial RREF of {Gi, i ∈ Nm} in x and a, and

J1 be the partial RREF of {Gi, i ∈ Nm} in a.
5: Reduce F0 by J0 to obtain F .
6: The Problem III.1 is equivalent to

Problem III.2. Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ Nm.

7: return Problem III.2.

Remark III.1. In Algorithm 2, if Problem III.1 can be
solved, then F needs to satisfy V (F )∩{x1, . . . , xn} = ∅. If
there exist xi ∈ V (F ), then xi is a free variable in Problem
III.2, and Problem III.2 cannot be solved. Thus Problem III.1
cannot be solved. For example, we consider the problem

P1: Prove x1 + x3 ≥ 0 subject to x1 ≥ 0 and x2 ≥ 0.
Running Algorithm 2, the above problem becomes

P2: Prove a1 + x3 ≥ 0 subject to a1 ≥ 0.
Obviously, P2 cannot be proved since x3 is a free variable.

Let a = (a1, . . . , am)T , F ∈ Rh[a], fi ∈ Rh[a] for
i ∈ Nm̃, Sa = {ai ≥ 0, i ∈ Nm}, and Ea = {fi =
0, i ∈ Nm̃}. Based on the discussion above, we only need to
consider the case that F satisfies V (F )∩{x1, . . . , xn} = ∅.

To facilitate the discussion, we restate Problem III.2 in a
general form:

Problem III.3. Prove F ≥ 0 subject to Ea and Sa.

We say that a problem as given in Problem III.3 is “solvable”
if F ≥ 0 is implied by Ea and Sa.

Definition III.9. Let Ef̃ = {f̃i = 0, i ∈ Nm̃} and Ef ′ =

{f ′
i = 0, i ∈ Nm′} be two equality sets, where f̃i, f ′

i ∈
Rh[x]. If the solution sets of Ef ′ and Ef̃ are the same, then
we say that Ef̃ and Ef ′ are equivalent.1

Definition III.10. Let hi ∈ Rh[a], i = 1, 2, where a =
(a1, . . . , am)T and let Ef̃ = {f̃i = 0, i ∈ Nm̃} be an
equality set, where f̃i ∈ Rh[a] for all i ∈ Nm̃. We say
h1 can be transformed to h2 by Ef̃ if h1 ≡ h2 + h3, where

h3 ≡
m′∑
i=1

qif
′
i , qi ∈ R and Ef ′ = {f ′

i = 0, i ∈ Nm′} is an

equivalent set of Ef̃ .

Theorem III.1 ( [14]). Problem III.3 is solvable if and only
if F can be transformed into a conic combination of ai, i ∈
Nm by Ea.

Definition III.11. Let Ea = {fi = 0, i ∈ Nm̃}, where fi is
a polynomial in a, be an equality set. We say eliminating a
variable ai from Ea to mean solving for ai in some fi = 0
with ai ∈ V (fi) to obtain ai = Ai and then substituting
ai = Ai into Ea to obtain EA = subs(ai = Ai, Ea)\{0 =
0}.

Let F be a polynomial in a. We say eliminating ai from
F by Ea to mean eliminating ai from Ea to obtain ai = Ai

and EA, and then substituting ai = Ai into F to obtain
F1 = subs(ai = Ai, F ).

The notions of redundant inequality and implied equality
in Definitions III.4 and III.5, respectively can be applied
in the more general setting in Problem III.3. Specifically,
ai = 0, i ∈ Nm is an implied equality if −ai ≥ 0 is
provable subject to Ea and Sa. Also, by eliminating ai for
some i ∈ Nm from Ea to obtain ai = Ai and EA, ai ≥ 0 is
a redundant inequality if Ai ≥ 0 is provable subject to EA

and Sa\{ai ≥ 0}.

Definition III.12. Let f be a polynomial in a =
{a1, a2, . . . , am}. Let m̃ ≤ m and j1, j2, . . . , jm̃ be dis-
tinct elements of {1, 2, . . . ,m}. If f =

∑m̄
i=1 piaji or

f = −
∑m̄

i=1 piaji with pi > 0, then f is called a Type I
linear combination of aji . If f =

∑m̄−1
i=1 piaji − pm̄ajm̄ or

f = −
∑m̄−1

i=1 piaji +pm̄ajm̄ with pi > 0, then f is called a
Type II linear combination of aji , and let single(f) = ajm̄ .

Definition III.13. In Problem III.3, if (f = 0) ∈ Ea and
1) if f is Type I, then ai = 0 for ai ∈ V (f) are called

trivially implied equalities;

1With a slight of abuse of terminology, the solution set of Ef̃ refers to
the set {(x1, x2, . . . , xn) ∈ Rn : f̃i = 0, i ∈ Nm̃}.
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2) if f is Type II, then single(f) ≥ 0 is called a trivially
redundant inequality.

Example III.2. Let Ea = {fi = 0, i ∈ N4}, where f1 =
a1 + a2, f2 = −a1 − a2, f3 = a4 − a5 − a6, and f4 =
a7 + a8 − 2a9. Then f1 and f2 are Type I, f3 and f4 are
Type II, single(f3) = a4, and single(f4) = a9. It can
readily be checked that a1 = 0 and a2 = 0 are trivially
implied equalities, and a4 ≥ 0 and a9 ≥ 0 are trivially
redundant inequalities.

In the rest of the paper, we denote the ith element of a
sequence B by B[i]. We also denote the ith element of a set
S of polynomials in x by S[i], where the elements in S are
assumed to be sorted in lexicographic order. For example,
x1 + 2x2 ≻ x2 + x5 and x3 + x5 ≻ x3 + x6.

Definition III.14. For a set S, let |S| be the number of
elements involved in S.

Now we develop an algorithm to remove all trivially
implied equalities and trivially redundant inequalities in the
constraints in Problem III.3. To facilitate the discussion, we
use subs(·, ·) to denote eleminating one or more variables
from a set of polynomials by substitution.

Algorithm 3 Preprocessing Problem III.3

Input: Problem III.3.
Output: A reduced LP for Problem III.3.

1: Let E1 := R̃−1(Ea), S1 := R−1(Sa), F1 := F , i1 := 1.
2: while i1 = 1 do
3: Let i1 := 0.
4: for i from 1 to |E1| do
5: Let f := E1[i].
6: if f is Type I then
7: // In this case, all equalities in R̃(V (f)) are trivially

implied equalities.
8: E1 := subs(R̃(V (f)), E1)\{0}.
9: S1 := S1\V (f).

10: F1 := subs(R̃(V (f)), F1).
11: i1 := 1.
12: end if
13: if f is Type II then
14: // In this case, the inequality single(f) ≥ 0 is a

trivially redundant inequality.
15: E1 := subs(single(f)

= solve(f, single(f)), E1)\{0}.
16: S1 := S1\{single(f)}.
17: F1 := subs(single(f) = solve(f, single(f)), F1).
18: i1 := 1.
19: end if
20: end for
21: end while
22: return A reduced LP:

Problem III.4. Prove F1 ≥ 0 subject to R̃(E1) and R(S1).

Algorithm 3 removes all the trivially implied equalities
and trivially redundant inequalities from Problem III.3. To-
ward solving Problem III.3, we first apply Algorithm 3 to
reduce it to Problem III.4. The next algorithm is a heuristic
that attempts to solve this problem. If unsuccesful, the
algorithms in [14, Appendix A] will be applied to further

reduce the LP into a smaller one that contains no implied
equality and redundant inequality.

Algorithm 4 Heuristic search for a conic combination

Input: Problem III.4.
Output: SUCCESSFUL, or UNSUCCESSFUL and a reduced

LP.

1: Let J := E1, J2 := ∅.
2: Let V(F1) = [ai1 , . . . , ain3

] and C(F1) = [p1, . . . , pn3 ],
where 1 ≤ n3 ≤ m and the coefficient pj corresponds to
the variable aij for all j ∈ Nn3 .

3: while (there exists pj < 0 for some j ∈ Nn3) ∧ (|J | > 0)
∧ (aij ∈ V (f) for some f ∈ J) do

4: Solve aij from f = 0 to yield aij = Aij such that Aij is
a polynomial in V (f)\{aij}.

5: F1 := F1 − pj(aij −Aij ).
6: J := subs(aij = Aij , J)\{0}.
7: J2 := subs(aij = Aij , J2) ∪ {aij −Aij}.
8: Update V(F1) and C(F1).
9: end while

10: if there does not exist a negative element in C(F1) then
11: // F1 ≥ 0 is obviously implied by R(S1).
12: Return ‘SUCCESSFUL’.
13: else
14: // Need to solve

Problem III.5. Prove F1 ≥ 0 subject to R̃(J ∪ J2) and
R(S1).

15: // Instead of reducing F1 by J ∪ J2 directly, since J2 is
already in row echelon form after the WHILE loop, we can
simplify the computation as follows.

16: Reduce F1 and J2 by J to obtain the remainder F2 and
the remainder set J̃2, respectively, and also the RREF of J
denoted by J̃ .

17: Let Ẽ1 = J̃ ∪ J̃2, which is an RREF of R̃−1(Ea).
18: // Problem III.5 is reduced to

Problem III.6. Prove F2 ≥ 0 subject to R̃(Ẽ1) and
R(S1).

19: Apply the algorithms in [14, Appendix A] to Problem III.6
to obtain a reduction of Problem III.4:

Problem III.7. Prove F3 ≥ 0 subject to R̃(Ẽ2) and
R(V ({F3} ∪ Ẽ2)).

20: // Problem III.7 contains no implied equalities and redundant
inequalities. Thus we only need to consider the inequality
constraints R(V ({F3} ∪ Ẽ2)) instead of R(S1), where
|V ({F3} ∪ Ẽ2)| ≤ |S1|.

21: Return ‘UNSUCCESSFUL’ and Problem III.7.
22: end if

In [14], we also give an example to show that Algorithm 4
is not always successful even though the problem is solvable.
In general, different decisions made in the algorithm can lead
to different outcomes.

Assume that Algorithm 4 outputs ‘UNSUCCESSFUL’ and
Problem III.7, which is a reduction of Problem III.4. We now
present the following algorithm for solving this problem.

Algorithm 5 Solving Problem III.7

Input: Problem III.7.
Output: The statement “Problem III.7 is solvable” is TRUE or

FALSE.

1: Assume that Ẽ2 has the form Ẽ2 = {akl−Akl , l ∈ Nr}, where
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r is the rank of Ẽ2, and Akl ’s are linear combinations of the
free variables akr+1 , . . . , akt , where t = |V (Ẽ2)| ≤ m.

2: Let F4 ≡ F3 +
r∑

l=1

pl(akl − Akl), where pl, 1 ≤ l ≤ r are

to be determined. Since F3 and Akl ’s are in terms of the free

variables, we can rewrite F4 as F4 ≡
r∑

l=1

plakl +
t∑

l=r+1

Plakl ,

where Pl’s are linear combinations of pl’s.
3: // By Theorem III.1, Problem III.7 can be proved if and only

if F4 can be expressed as a conic combination of ai’s.
4: Solve the following LP:

Problem III.8. min(0) such that pl ≥ 0, l ∈ Nr and
Pl ≥ 0, l ∈ Nt\Nr .

5: if Problem III.8 can be solved then
6: Declare that “Problem III.7 can be solved” is ‘TRUE’.
7: else
8: Declare that “Problem III.7 can be solved” is ‘FALSE’.
9: end if

10: return The argument “the Problem III.7 can be solved” is
TRUE or FALSE.

IV. PROCEDURE FOR PROVING INFORMATION
INEQUALITY

In this section, we present a procedure for proving infor-
mation inequalities under the constraint of an inequality set
and/or equality set. They are designed in the spirit of The-
orem II.2. To simplify the discussion, H(X1, X2, . . . , Xn)
will be denoted by h1,2,...,n, so on and so forth. For a joint
entropy t = hi1,i2,...,in , the set L(t) = {i1, i2, ..., in} is
called the subscript set of t. The following defines an order
among the joint entropies.

Definition IV.1. Let t1 = hi1,i2,...,in1
and t2 = hj1,j2,...,jn2

be two joint entropies. We write t1 ≻ t2 if one of the
following conditions is satisfied:

1) |L(t1)| > |L(t2)|,
2) |L(t1)| = |L(t2)|, il = jl for l = 1, . . . , k − 1 and

ik > jk.

Next, we present our procedure.
Input:
Objective information inequality: F̄ ≥ 0.
Elemental information inequalities: C̄i ≥ 0, i = 1, . . . ,m1.
Additional constraints: C̄j ≥ 0, j = m1 + 1, . . . ,m2;
C̄k = 0, k = m2 + 1, . . . ,m3.
// Here, F̄ , C̄i, C̄j , and C̄k are linear combination of
Shannon’s information measures.
Output: A proof of F̄ ≥ 0 if it is implied by the elemental
inequalities and the additional constriants.

Step 1. Transform F̄ and C̄i, i ∈ Nm3
to homogeneous

linear polynomials F̃ and C̃i, i ∈ Nm3
in joint entropies.

Step 2. Fix the joint entropies’ order h1,2,...,n ≻ · · · ≻ h1.
Apply Algorithm 1 to reduce the inequality set {C̃i ≥ 0, i ∈
Nm2

} by the equality set {C̃i = 0, i ∈ Nm3
\Nm2

} to obtain
the reduced inequality set {Ci ≥ 0, i ∈ Nm}.

Step 3. Reduce F̃ by the equality set {C̃i = 0, i ∈
Nm3\Nm2} to obtain F5.

// We need to solve

Problem IV.1. Prove F5 ≥ 0 under the constraints Ci ≥
0, i ∈ Nm.

Step 4. Under the variable order h1,2,...,n ≻ · · · ≻ h1 ≻
a1 ≻ · · · ≻ am, apply Algorithm 2 to Problem IV.1 to obtain

Problem III.2(∗). Prove F ≥ 0 subject to R̃(J1) and
ai ≥ 0, i ∈ Nm, where J1 = {fi, i ∈ Nm4}.

Step 5. Apply Algorithm 3 and Algorithm 4 successively
to the above problem. If Algorithm 4 outputs ‘SUCCESS-
FUL’, then the objective function F̄ ≥ 0 is proved. Other-
wise, the following reduced LP is obtained:

Problem III.7(∗). Prove F3 ≥ 0 subject to R̃(Ẽ2) and
R(V ({F3} ∪ Ẽ2)), where Ẽ2 = {f̃i, i ∈ Nm5}.

// Note that m5 ≤ m4 and |R(V ({F3} ∪ Ẽ2))| ≤ m.
Step 6. Apply Algorithm 5 to the above problem. If

Algorithm 5 outputs ‘TRUE’, then the objective function
F̄ ≥ 0 is proved. Otherwise, declare ‘Not Provable’.

Next, we give an example to show the effectiveness of
our procedure.

Example IV.1. I(Xi;X4) = 0, i = 1, 2, 3 and
H(X4|Xi, Xj) = 0, 1 ≤ i < j ≤ 3 ⇒ H(Xi) ≥ H(X4).

The inequality above can be proved by our procedure. The
details can be found in [14]. Table I shows the advantage of
our procedure by comparing it with the Direct LP method
and our previous work [13].

TABLE I

Number of
variables

Number of
equality constraints

Number of
Inequality constraints

Direct LP method 15 6 28
LP in [13] 2 0 6

LP in this work no LP needs to be solved

In [14], we also apply our procedure to tackle the problem
studied by Tian [11] regarding a conjecture on the rate region
for (4,3,3) exact-repair regeneration codes [10] and show
a significant reduction in the complexity of the problem
compared with our previous work [13].

V. CONCLUDING REMARKS

Since different elimination choices of variables in Algo-
rithm 4 can lead to different results, our heuristic method
may not necessarily succeed. Nevertheless, if the first at-
tempt is unsuccessful, we can repeat the attempt with differ-
ent elimination choices of variables for a certain maximum
number of times. Even if Algorithm 4 cannot solve the prob-
lem directly, it can still reduce the problem to the minimal
LP in a shorter time and with less memory compared with
our previous work [13]. The reader is referred to [14] for
the details, where we also included a detailed discussion on
the advantage and effectiveness of our procedure for solving
more elaborate problems such as Tian’s problem [11].
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